Schema-based independence analysis for XML updates

Michael Benedikt and James Cheney

University of Oxford and University of Edinburgh

VLDB 2009
Motivation

• Suppose we want to maintain multiple (materialized) views or constraints
 • expressed by queries Q1, Q2, ...

• When the database is updated
 • If we can determine (quickly) that query and update are independent
 • then can skip view/constraint maintenance
Query-update independence
Query-update independence
Query-update independence
Query-update independence
Query-update independence

\[Q(U(DB)) = \ ?? \]
Contributions

• a static analysis
• that safely detects independence
• and takes schema into account
• for XQuery Update with all XPath axes
• fast enough to be useful as an optimization
XML updates

• SQL has update expressions
 • Allow in-place modification
 • Implemented efficiently
• XQuery does not
• W3C developing XQuery Update Facility
 • Goal: SQL-like updates for XML?
Update Example

• First, let’s illustrate the semantics of W3C updates via an example.

 delete /a/b,
 insert <foo>bar</foo>
 before /a/b

• Note: this is **not** equivalent to doing nothing!
Update Example

delete /a/b,
insert <foo>bar</foo>
before /a/b
First **collect** updates

```
delete /a/b,
insert <foo>bar</foo>
before /a/b
```
First **collect** updates

delete /a/b,
insert `<foo>bar</foo>`
before /a/b
Then reorder & apply

delete /a/b,
insert <foo>bar</foo>
before /a/b
Then reorder & apply

delete /a/b,
insert <foo>bar</foo>
before /a/b
Then reorder & apply

delete /a/b,
insert <foo>bar</foo>
before /a/b
Independence example

for x in /c/a
return d[$x]$
Independence example

for x in /c/a
return d[x]
Independence example

for x in /c/a
return d[x]
Independence example

```
for $x$ in /c/a
return d[$x]
```
Independence example

for x in /c/a
 return d[$x]
Independence non-example

for x in /a
return d[x]
Independence **non-example**

```
for $x in /a
  return d[$x]
```

```
for $x in /a
  return d[$x]
```

```
for $x in /a
  return d[$x]
```

```
for $x in /a
  return d[$x]
```
Independence **non-example**

```
for $x$ in /a
return d[$x]
```

```
≠
```

```
for $x$ in /a
return d[$x]
```
Our approach

• Exploits a **schema** S that describes the input
• Statically calculate:
 • $c =$ **Copied nodes** of Q
 • $a =$ **Accessed Nodes** of Q
 • $u =$ **Updated Nodes** of U
• c, a, u are sets of type names in S
Our approach

• We show that Q and I are independent modulo S if:

• a is disjoint from u
 • that is, the update has no impact on accessed nodes

• and c/\ast is disjoint from u
 • that is, the update does not impact any copied nodes or their descendants
Analysis example

for x in /c/a
return d[x]
Analysis example

for x in /c/a
return d[x]
Analysis example

```
for $x$ in /c/a
return d[$x]
```
Analysis example

for x in /c/a
return d[x]
for x in /c/a
return d[x]
Analysis example

for x in /c/a
return d[x]

Updated node
Analysis example

for x in /c/a
return d[x]
Analysis example

for x in /c/a
 return d[$x]

Updated nodes disjoint from accessed or copied nodes
Analysis example

for x in /c/a
return d[x]
for x in /a
return d[x]
Analysis example II

for x in /a
return d[$x]

Updated node avoids accessed & copied nodes
Analysis example II

for x in /a
return d[x]

for x in /a
return d[x]
Analysis example II

```
for $x$ in /a
  return d[$x]
```
Analysis example II

Updated node is a descendant of a copied node!

for x in /a
return d[x]
for x in /a
return d[x]
Analysis example II

for x in /a
return d[x]

for x in /a
return d[x]

for x in /a
return d[x]
Analysis example II

Query and update are **not** independent

for x in /a
return d[x]
Oversimplification Warning

- These preceding examples are drastic oversimplifications
 - Glossing over schema aspects
 - The real story (in paper) is more complicated
 - But this is the basic idea
- We’ve formalized and proved soundness
 - Exact independence checking undecidable for full XQuery/Update; hard even for special cases
Experimental results

- Implemented analysis in OCaml
- Built testbed of queries and updates
 - XMark/XPathMark
- Considered all query-update pairs
 - Tested whether they are independent on fixed input
 - Used static analysis to avoid recomputing queries after updates
- Used Galax 1.1 with 1-2MB XMark documents (but benefits improve as size increases)
Independence hit rate

44% overall
Does it help view maintenance?
Does it help view maintenance?
Related work

- Independence for XPath-based queries/updates
 - Raghavachari and Shmueli [2006]:
- Commutativity analysis
 - Ghelli, Rose & Simeon [2007,2008]
- XML projection
 - Marian & Simeon [2003]
 - Benzaken et al. [2006]
Future work

• Several opportunities for improving analysis
 • more accurate XPath typing (following Benzaken et al. [2006])?
 • combine schema-based techniques with path-based (following Raghavachiari & Shmueli 2006])?
 • combine static techniques with incremental view maintenance?
Conclusions

• We’ve presented a query-update independence analysis that is:
 • static
 • schema-based
 • for XML queries and (W3C-style) updates
• It’s implemented and experimentally validated
 • savings of 25% even for small documents
 • low overhead; independent of data size